Friday, March 19, 2010

The Mystery Of Moonwater



Mini-SAR map of the Circular Polarization Ratio (CPR) of the north pole of the Moon. Fresh, “normal” craters (red circles) show high values of CPR inside and outside their rims. This is consistent with the distribution of rocks and ejected blocks around fresh impact features, indicating that the high CPR here is surface scattering. The “anomalous” craters (green circles) have high CPR within, but not outside their rims. Their interiors are also in permanent sun shadow. These relations are consistent with the high CPR in this case being caused by water ice, which is only stable in the polar dark cold traps. We estimate over 600 million cubic meters (1 cubic meter = 1 metric ton) of water in these features.


Main L, 14 km diameter, 81.4° N, 22° E

Fresh Crater CPR
View a Larger version of the fresh crater CPR (537KB).
The fresh impact crater Main L (14 km diameter), which shows high CPR inside and outside its rim. SC is the “same sense, circular” polarization; CPR is “circular polarization ratio.” The histograms at right show that the high CPR values within (red line) and outside the crater rim (green line) are nearly identical.
Anomalous Polar Crater

On Floor of Rozhdestvensky, 9 km Diameter, 84.3° N, 157° W

An “anomalous” crater on the floor of Rozhdestvensky
View a Larger version of the Anomalous Polar Crater (627KB).
An “anomalous” crater on the floor of Rozhdestvensky, near the north pole of the Moon. This feature shows high CPR within the crater rim, but low CPR outside, suggesting that roughness (which occurs throughout a fresh crater) is not the cause of the elevated CPR. This feature’s interior is in permanent sun shadow. SC stands for “same sense, circular”, OC stands for “opposite sense, circular” and CPR is the “circular polarization ratio.” The histogram of CPR values clearly shows that interior points (red line) have higher CPR values than those outside the crater rim (green line).
Moonwater. Look it up. You won't find it. It's not in the dictionary. That's because we thought, until recently, that the Moon was just about the driest place in the solar system. Then reports of moonwater started "pouring" in - starting with estimates of scant amounts on the lunar surface, then gallons in a single crater, and now 600 million metric tons distributed among 40 craters near the lunar north pole."We thought we understood the Moon, but we don't," says Paul Spudis of the Lunar and Planetary Institute. "It's clear now that water exists up there in a variety of concentrations and geologic settings. And who'd have thought that today we'd be pondering the Moon's hydrosphere?"
Spudis is principal investigator of NASA's Mini-SAR team - the group with the latest and greatest moonwater "strike." Their instrument, a radar probe on India's Chandrayaan-1, found 40 craters each containing water ice at least 2 meters deep.
"If you converted those craters' water into rocket fuel, you'd have enough fuel to launch the equivalent of one space shuttle per day for more than 2000 years. But our observations are just a part of an even more tantalizing story about what's going on up on the Moon."
It's the story of a lunar water cycle, and it's based on the seemingly disparate - but perhaps connectable - results from Mini-SAR and NASA's recent LCROSS mission and Moon Mineralogy Mapper (M3 or "M-cubed") instrument also on Chandrayaan-1.
"So far we've found three types of moonwater," says Spudis. "We have Mini-SAR's thick lenses of nearly pure crater ice, LCROSS's fluffy mix of ice crystals and dirt, and M-cube's thin layer that comes and goes all across the surface of the Moon."
On October 9, 2009, LCROSS, short for Lunar Crater Observation and Sensing Satellite, struck water in a cold, permanently dark crater at the lunar south pole. Since then, the science team has been thoroughly mining their data.
"It looks as though at least two different layers of our crater soil contain water, and they represent two different time epochs," explains Anthony Colaprete, LCROSS principal investigator. "The first layer, ejected in the first 2 seconds from the crater after impact, contains water and hydroxyl bound up in the minerals, and even tiny pieces of pure ice mixed in. This layer is a thin film and may be relatively 'fresh,' perhaps recently replenished."
According to Colaprete, this brand of moonwater resembles the moonwater M3 discovered last year in scant but widespread amounts, bound to the rocks and dust in the very top millimeters of lunar soil.
The second layer is different. "It contains even more water ice plus a treasure chest of other compounds we weren't even looking for," he says. "So far the tally includes sulfur dioxide (SO2), methanol (CH3OH), and the curious organic molecule diacetylene (H2C4). This layer seems to extend below at least 0.5 meters and is probably older than the ice we're finding on the surface."
They don't know why some craters contain loads of pure ice while others are dominated by an ice-soil mixture. It's probably a sign that the moonwater comes from more than one source.
"Some of the water may be made right there on the Moon," says Spudis. "Protons in the solar wind can make small amounts of water continuously on the lunar surface by interacting with metal oxides in the rocks. But some of the water is probably deposited on the Moon from other places in the solar system."
The Moon is constantly bombarded by impactors that add to the lunar water budget. Asteroids contain hydrated minerals, and comet cores are nearly pure ice.
The researchers also think that much of the crater water migrates to the poles from the Moon's warmer, lower latitudes. "All our findings are telling us there's an active water cycle on the Moon," marvels Colaprete.
Think about it. The "driest place in the solar system" has a water cycle.
"It's a different world up there," says Spudis, "and we've barely scratched the surface. Who knows what discoveries lie ahead?"
Source:- NASA Science News

0 comments:

Post a Comment